Skip to main content
 Web开发网 » 站长学院 » 浏览器插件

TensorFlow实现神经网络入门篇

2021年11月04日6420百度已收录

摘要: 什么项目可以使用神经网络?使用神经网络的一般工作流程是什么?本文作者将在本文中一一讲述,并且在文末提供了一个TensorFlow实现的小例子,以便大家的学习入门。

如果你一直关注数据科学/机器学习,你就不能错过深度学习和神经网络的热潮。互联网公司正在寻找这方面的人,而且从竞赛到开源项目,都有巨额奖金。

如果你对深度学习所提供的前景感到兴奋,但是还没有开始,在这里或许是你开始的第一步。

在这篇文章中,我将介绍TensorFlow。阅读本文后,你将能够理解神经网络的应用,并使用TensorFlow解决现实生活中的问题,本文中的代码是用Python编写的,Python最近的火爆也和深度学习有关。

1:何时使用神经网络?有关神经网络和深度学习的更详细的解释,请看这里。其“更深”版本正在图像识别,语音和自然语言处理等诸多领域取得巨大突破。

现在的主要问题是何时使用神经网络?关于这点,你必须记住一些事情:

1.1:神经网络需要大量的信息数据来训练。将神经网络想象成一个孩子。它首先观察父母如何走路。然后它才会独立行走,并且每走一步,孩子都会学习如何执行特定的任务。如果你不让它走,它可能永远不会学习如何走路。你可以提供给孩子的“数据”越多,效果就越好。

1.2:当你有适当类型的神经网络来解决问题时。每个问题都有自己的难点。数据决定了你解决问题的方式。例如,如果问题是序列生成,递归神经网络更适合,而如果它是一个图像相关的问题,你可能会采取卷积神经网络。

1.3:硬件要求对于运行深度神经网络模型是至关重要的。神经网络很早以前就被“发现”了,但是近年来,神经网络一直在发光,这是因为计算能力的强大。如果你想用这些网络解决现实生活中的问题,准备购买一些高性能硬件吧!

2:如何解决神经网络问题?神经网络是一种特殊类型的机器学习(ML)算法。因此,与每个ML算法一样,它遵循数据预处理,模型构建和模型评估等常规ML工作流程。我列出了一个如何处理神经网络问题的待办事项清单。

1.检查神经网络是否可以提升传统算法。

2.做一个调查,哪个神经网络架构最适合即将解决的问题。

3.通过你选择的语言/库来定义神经网络架构。

4.将数据转换为正确的格式,并将其分成批。

5.根据你的需要预处理数据。

6.增加数据以增加规模并制作更好的训练模型。

7.将数据批次送入神经网络。

8.训练和监测训练集和验证数据集的变化。

9.测试你的模型,并保存以备将来使用。

本文中,我将重点关注图像数据。让我们先了解一下,然后再研究TensorFlow。

图像大多排列为3D阵列,尺寸指的是高度,宽度和颜色通道。例如,如果你现在截取了你的电脑的屏幕截图,则会首先将其转换为3D数组,然后将其压缩为PNG或JPG文件格式。

虽然这些图像对于人来说是相当容易理解的,但计算机很难理解它们。这种现象被称为语义鸿沟。我们的大脑可以查看图像,并在几秒钟内了解完整的图片。另一方面,计算机将图像视为一组数字。

在早期,人们试图把图像分解成像“模板”这样的“可理解的”格式。例如,一张脸总是有一个特定的结构,这个结构在每个人身上都有所保留,比如眼睛的位置和鼻子,或我们的脸的形状。但是这种方法并不可行,因为当要识别的对象的数量增加时,“模板”就不会成立。

2012年,深度神经网络架构赢得了ImageNet的挑战,这是一个从自然场景中识别物体的重大挑战。

那么人们通常使用哪种库/语言来解决图像识别问题?一个最近的一项调查发现,最流行的深度学习库是Python提供的API,其次是Lua中,Java和Matlab的。最流行的库是:

Caffe

DeepLearning4j

TensorFlow

Theano

Torch

让我们来看看TensorFlow所提供的功能。什么是TensorFlow?

“TensorFlow是一个使用数据流图进行数值计算的开源软件库。图中的节点表示数学运算,而图边表示在它们之间传递的多维数据阵列(又称张量)。灵活的体系结构允许你使用单个API将计算部署到桌面、服务器或移动设备中的一个或多个CPU或GPU。“

TensorFlow实现神经网络入门篇  Theano入门 第1张

如果你之前曾经使用过numpy,那么了解TensorFlow将会是小菜一碟!numpy和TensorFlow之间的一个主要区别是TensorFlow遵循一个“懒惰”的编程范例。它首先建立所有要完成的操作图形,然后当一个“会话”被调用时,它再“运行”图形。构建一个计算图可以被认为是TensorFlow的主要成分。要了解更多关于计算图的数学构成,请阅读这篇文章。

TensorFlow不仅仅是一个强大的神经网络库。它可以让你在其上构建其他机器学习算法,如决策树或k最近邻。

使用TensorFlow的优点是:

1.它有一个直观的结构,因为顾名思义,它有一个“张量流”。 你可以很容易地看到图的每一个部分。

2.轻松地在CPU / GPU上进行分布式计算。

3.平台灵活性。你可以在任何地方运行模型,无论是在移动设备,服务器还是PC上。

3.典型的“张量流”每个库都有自己的“实施细节”,即按照其编码模式编写的一种方法。例如,在执行scikit-learn时,首先创建所需算法的对象,然后在训练集上构建一个模型,并对测试集进行预测。例如:

# define hyperparamters of ML algorithmclf = svm.SVC(gamma=0.001, C=100.)# train clf.fit(X, y)# test clf.predict(X_test)正如我刚才所说,TensorFlow遵循一个“懒惰”的方法。

在TensorFlow中运行程序的通常工作流程如下所示:

1.建立一个计算图。这可以是TensorFlow支持的任何数学操作。

2.初始化变量。

3.创建会话。

4.在会话中运行图形。

5.关闭会话。

接下来,让我们写一个小程序来添加两个数字!

# import tensorflowimport tensorflow as tf# build computational grapha = tf.placeholder(tf.int16)b = tf.placeholder(tf.int16)addition = tf.add(a, b)# initialize variablesinit = tf.initialize_all_variables()# create session and run the graphwith tf.Session() as sess: sess.run(init) print "Addition: %i" % sess.run(addition, feed_dict={a: 2, b: 3})# close sessionsess.close()4.在TensorFlow中实现神经网络注意:我们可以使用不同的神经网络体系结构来解决这个问题,但是为了简单起见,我们需要实现前馈多层感知器。

神经网络的常见的实现如下:

1.定义要编译的神经网络体系结构。

2.将数据传输到你的模型。

3.将数据首先分成批次,然后进行预处理。

4.然后将其加入神经网络进行训练。

5.显示特定的时间步数的准确度。

6.训练结束后保存模型以供将来使用。

7.在新数据上测试模型并检查其执行情况。

我们的问题是识别来自给定的28x28图像的数字。我们有一部分图像用于训练,剩下的则用于测试我们的模型。所以首先下载数据集,数据集包含数据集中所有图像的压缩文件:train.csv和test.csv。数据集中不提供任何附加功能,只是以“.png”格式的原始图像。

我们将使用TensorFlow来建立一个神经网络模型。所以你应该先在你的系统中安装TensorFlow。根据你的系统规格,请参阅官方安装指南进行安装。

我们将按照上述模板进行操作。用Python 2.7内核创建一个Jupyter笔记本,并按照下面的步骤。

导入所有必需的模块:

%pylab inlineimport osimport numpy as npimport pandas as pdfrom scipy.misc import imreadfrom sklearn.metrics import accuracy_scoreimport tensorflow as tf设置初始值,以便我们可以控制模型的随机性:

# To stop potential randomnessseed = 128rng = np.random.RandomState(seed)第一步是设置保管目录路径:

root_dir = os.path.abspath('../..')data_dir = os.path.join(root_dir, 'data')sub_dir = os.path.join(root_dir, 'sub')# check for existenceos.path.exists(root_dir)os.path.exists(data_dir)os.path.exists(sub_dir)让我们看看数据集。这些格式为CSV格式,并且具有相应标签的文件名:

train = pd.read_csv(os.path.join(data_dir, 'Train', 'train.csv'))test = pd.read_csv(os.path.join(data_dir, 'Test.csv'))sample_submission = pd.read_csv(os.path.join(data_dir, 'Sample_Submission.csv'))train.head()TensorFlow实现神经网络入门篇  Theano入门 第2张

让我们看看我们的数据是什么样的!

img_name = rng.choice(train.filename)filepath = os.path.join(data_dir, 'Train', 'Images', 'train', img_name)img = imread(filepath, flatten=True)pylab.imshow(img, cmap='gray')pylab.axis('off')pylab.show()TensorFlow实现神经网络入门篇  Theano入门 第3张

上面的图像表示为numpy数组,如下所示:

TensorFlow实现神经网络入门篇  Theano入门 第4张

为了更简单的数据处理,让我们将所有的图像存储为numpy数组:

TensorFlow实现神经网络入门篇  Theano入门 第5张

由于这是一个典型的ML问题,为了测试我们模型的正确功能,我们创建了一个验证集。

split_size = int(train_x.shape[0]*0.7)train_x, val_x = train_x[:split_size], train_x[split_size:]train_y, val_y = train.label.values[:split_size], train.label.values[split_size:]现在,我们定义一些辅助函数,我们稍后使用它:

TensorFlow实现神经网络入门篇  Theano入门 第6张

我们来定义我们的神经网络架构。我们定义了一个三层神经网络:输入,隐藏和输出。输入和输出中神经元的数量是固定的,因为输入的是28x28图像,输出的是10x1向量。我们隐藏层中有500个神经元。这个数字可以根据你的需要而有所不同。阅读文章以获得完整的代码,并深入了解它的工作原理。

本文由阿里云云栖社区组织翻译。

文章原标题《An Introduction to Implementing Neural Networks Using TensorFlow》

作者:Faizan Shaikh 数据科学家印度人译者:虎说八道

评论列表暂无评论
发表评论
微信