人工智能是通过学习人类的数据,从中找出规律,然后代替人类在各个领域工作。如果你想知道人工智能是如何从人类的数据中学习的,可以先从机器学习的算法入手,这些算法有趣且不难理解,是很好的激发学习兴趣的着手点。
机器学习的算法有比如:
非监督式学习中的K-Means算法,DBSCAN,t-SNE等等,主要不是用来预测,而是对整个数据有一定的深入了解。
监督式学习中常见的有:
回归算法:试图采用对误差的衡量来探索变量之间的关系的一类算法,常见的种类有最小二乘法,逻辑回归,逐步式回归,多元自适应回归样条,以及本地散点平滑估计。决策树学习:根据数据的属性采用树状结构建立决策模型,通常用来解决分类的问题。常见种类有:分类及回归树,随机森林,多元自适应回归样条,以及梯度推进机。(虽然名字长但是内容不难理解)深度学习算法在近期赢得了很多关注,特别是百度也开始发力深度学习后,更是在国内引起了很多关注。在计算能力变得日益廉价的今天,深度学习试图建立大得多也复杂得多的神经网络。很多深度学习的算法是半监督式学习算法,用来处理存在少量未标识数据的大数据集。常见的深度学习算法包括:卷积网络,堆栈式自动编码器。(同样是名字长但是内容不难理解)
了解过一些算法后,就可以简单的跑一些数据来做自己的预测了!这时需要学习一下编程语言Python,具体的指令非常简单,几乎一行代码就能训练好预测模型,然后做出自己的预测结果了!具体资源有很多教机器学习的书籍和视频,B站和西瓜视频都有很多人在科普。
如果想自己做一些预测项目自娱自乐一下,也可以去Kaggle这个网站,有很多有趣的项目,网站提供数据,自己做模型做预测然后提交,比照精确度,满满的成就感。网站上也有很多人提供自己的解决思路和代码,可以去跟大神们学习一下。很有名的一个项目是:预测泰坦尼克号每位乘客最后有没有生存下来,生存率跟他们在船上的位置,性别,收入,家庭人数等等都有关系。