机器学习
机器学习是人工智能的一个子集,它利用统计技术提供了向计算机“学习”数据的能力,而不需要复杂的编程。简单来说,机器学习可以被定义为一种科学,它使计算机像人类一样行动和学习,并通过以实际交互和观察的形式向他们提供信息和数据,以独立的方式提高他们的学习能力。机器学习鼓励各种行业的各种自动化跨度和任务,从分析恶意软件或数据安全公司到寻求有利交易的财务专家,都是机器学习的应用场景。
让我们举一个著名的音乐流媒体服务的例子,该服务必须决定应该向听众推荐哪个新的艺术家或歌曲。机器学习算法帮助听众选择具有相同品味的其他听众。在这种情况下,机器学习将作为虚拟助手工作,为用户提供有关音乐行业新口味和需求的信息,系统可以根据这些信息向听众推荐新歌。
深度学习
与特定于任务的算法不同,深度学习是基于学习数据的机器学习的子集。它的灵感来自被称为人工神经网络的功能和结构。深度学习通过学习将世界显示为更简单的概念和层次结构,以及基于不那么抽象的概念来计算更抽象的代表,从而获得巨大的灵活性和力量。尽管深度学习这个词现在已经说了好几年了,但是现在所有人都在大肆宣传,它正受到越来越多的关注。
为了理解这个概念,举一个动物识别器的例子,它有助于识别给定的图像是狮子还是鹿。当我们将此解决为传统的机器学习问题时,我们将涉及特定的特征,比如说给定的动物是否有耳朵,是否有胡须或任何其他器官。简单来说,我们将定义面部特征,让系统识别动物。另一方面,在深度学习中,从第一步开始。深度学习将自动对关键特征进行定义和分类。深度学习将首先确定找出狮子或鹿的最相关因素。稍后它将开始识别形状和边缘的组合,以更深入地识别对象。例如,如果对象有耳朵或者有胡须。在定义了这些概念的连续分层识别之后,它将决定哪些特征负责找到正确的答案。
如果对深度学习和强化学习感兴趣,可以关注一下优就业和中科院专家推出的相关课程