Skip to main content
 Web开发网 » 站长学院 » 浏览器插件

TensorFlow中有哪些高级API?如何使用?

2021年11月03日7270百度已收录

背景调查公司 Onfido 研究主管 Peter Roelants 在 Medium 上发表了一篇题为《Higher-Level APIs in TensorFlow》的文章,通过实例详细介绍了如何使用 TensorFlow 中的高级 API(Estimator、Experiment 和 Dataset)训练模型。值得一提的是 Experiment 和 Dataset 可以独立使用。这些高级 API 已被最新发布的 TensorFlow1.3 版收录。

TensorFlow中有哪些高级API?如何使用?  Tensorflow框架 第1张

TensorFlow 中有许多流行的库,如 Keras、TFLearn 和 Sonnet,它们可以让你轻松训练模型,而无需接触哪些低级别函数。目前,Keras API 正倾向于直接在 TensorFlow 中实现,TensorFlow 也在提供越来越多的高级构造,其中的一些已经被最新发布的 TensorFlow1.3 版收录。

在本文中,我们将通过一个例子来学习如何使用一些高级构造,其中包括 Estimator、Experiment 和 Dataset。阅读本文需要预先了解有关 TensorFlow 的基本知识。

TensorFlow中有哪些高级API?如何使用?  Tensorflow框架 第2张

Experiment、Estimator 和 DataSet 框架和它们的相互作用(以下将对这些组件进行说明)

在本文中,我们使用 MNIST 作为数据集。它是一个易于使用的数据集,可以通过 TensorFlow 访问。你可以在这个 gist 中找到完整的示例代码。使用这些框架的一个好处是我们不需要直接处理图形和会话。

Estimator

Estimator(评估器)类代表一个模型,以及这些模型被训练和评估的方式。我们可以这样构建一个评估器:

return tf.estimator.Estimator(

model_fn=model_fn, # First-class function

params=params, # HParams

config=run_config # RunConfig

为了构建一个 Estimator,我们需要传递一个模型函数,一个参数集合以及一些配置。

参数应该是模型超参数的集合,它可以是一个字典,但我们将在本示例中将其表示为 HParams 对象,用作 namedtuple。

该配置指定如何运行训练和评估,以及如何存出结果。这些配置通过 RunConfig 对象表示,该对象传达 Estimator 需要了解的关于运行模型的环境的所有内容。

模型函数是一个 Python 函数,它构建了给定输入的模型(见后文)。

模型函数

模型函数是一个 Python 函数,它作为第一级函数传递给 Estimator。稍后我们就会看到,TensorFlow 也会在其他地方使用第一级函数。模型表示为函数的好处在于模型可以通过实例化函数不断重新构建。该模型可以在训练过程中被不同的输入不断创建,例如:在训练期间运行验证测试。

模型函数将输入特征作为参数,相应标签作为张量。它还有一种模式来标记模型是否正在训练、评估或执行推理。模型函数的最后一个参数是超参数的集合,它们与传递给 Estimator 的内容相同。模型函数需要返回一个 EstimatorSpec 对象——它会定义完整的模型。

EstimatorSpec 接受预测,损失,训练和评估几种操作,因此它定义了用于训练,评估和推理的完整模型图。由于 EstimatorSpec 采用常规 TensorFlow Operations,因此我们可以使用像 TF-Slim 这样的框架来定义自己的模型。

Experiment

Experiment(实验)类是定义如何训练模型,并将其与 Estimator 进行集成的方式。我们可以这样创建一个实验类:

experiment = tf.contrib.learn.Experiment(

estimator=estimator, # Estimator

train_input_fn=train_input_fn, # First-class function

eval_input_fn=eval_input_fn, # First-class function

train_steps=params.train_steps, # Minibatch steps

min_eval_frequency=params.min_eval_frequency, # Eval frequency

train_monitors=[train_input_hook], # Hooks for training

eval_hooks=[eval_input_hook], # Hooks for evaluation

eval_steps=None # Use evaluation feeder until its empty

Experiment 作为输入:

一个 Estimator(例如上面定义的那个)。

训练和评估数据作为第一级函数。这里用到了和前述模型函数相同的概念,通过传递函数而非操作,如有需要,输入图可以被重建。我们会在后面继续讨论这个概念。

训练和评估钩子(hooks)。这些钩子可以用于监视或保存特定内容,或在图形和会话中进行一些操作。例如,我们将通过操作来帮助初始化数据加载器。

不同参数解释了训练时间和评估时间。

一旦我们定义了 experiment,我们就可以通过 learn_runner.run 运行它来训练和评估模型:

learn_runner.run(

experiment_fn=experiment_fn, # First-class function

run_config=run_config, # RunConfig

schedule="train_and_evaluate", # What to run

hparams=params # HParams

与模型函数和数据函数一样,函数中的学习运算符将创建 experiment 作为参数。

Dataset

我们将使用 Dataset 类和相应的 Iterator 来表示我们的训练和评估数据,并创建在训练期间迭代数据的数据馈送器。在本示例中,我们将使用 TensorFlow 中可用的 MNIST 数据,并在其周围构建一个 Dataset 包装器。例如,我们把训练的输入数据表示为:

# Define the training inputs

def get_train_inputs(batch_size, mnist_data):

"""Return the input function to get the training data.

Args:

batch_size (int): Batch size of training iterator that is returned

by the input function.

mnist_data (Object): Object holding the loaded mnist data.

Returns:

(Input function, IteratorInitializerHook):

- Function that returns (features, labels) when called.

- Hook to initialise input iterator.

iterator_initializer_hook = IteratorInitializerHook()

def train_inputs():

"""Returns training set as Operations.

Returns:

(features, labels) Operations that iterate over the dataset

on every evaluation

with tf.name_scope('Training_data'):

# Get Mnist data

images = mnist_data.train.images.reshape([-1, 28, 28, 1])

labels = mnist_data.train.labels

# Define placeholders

images_placeholder = tf.placeholder(

images.dtype, images.shape)

labels_placeholder = tf.placeholder(

labels.dtype, labels.shape)

# Build dataset iterator

dataset = tf.contrib.data.Dataset.from_tensor_slices(

(images_placeholder, labels_placeholder))

dataset = dataset.repeat(None) # Infinite iterations

dataset = dataset.shuffle(buffer_size=10000)

dataset = dataset.batch(batch_size)

iterator = dataset.make_initializable_iterator()

next_example, next_label = iterator.get_next()

# Set runhook to initialize iterator

iterator_initializer_hook.iterator_initializer_func = \

lambda sess: sess.run(

iterator.initializer,

feed_dict={images_placeholder: images,

labels_placeholder: labels})

# Return batched (features, labels)

return next_example, next_label

# Return function and hook

return train_inputs, iterator_initializer_hook

调用这个 get_train_inputs 会返回一个一级函数,它在 TensorFlow 图中创建数据加载操作,以及一个 Hook 初始化迭代器。

本示例中,我们使用的 MNIST 数据最初表示为 Numpy 数组。我们创建一个占位符张量来获取数据,再使用占位符来避免数据被复制。接下来,我们在 from_tensor_slices 的帮助下创建一个切片数据集。我们将确保该数据集运行无限长时间(experiment 可以考虑 epoch 的数量),让数据得到清晰,并分成所需的尺寸。

为了迭代数据,我们需要在数据集的基础上创建迭代器。因为我们正在使用占位符,所以我们需要在 NumPy 数据的相关会话中初始化占位符。我们可以通过创建一个可初始化的迭代器来实现。创建图形时,我们将创建一个自定义的 IteratorInitializerHook 对象来初始化迭代器:

class IteratorInitializerHook(tf.train.SessionRunHook):

"""Hook to initialise data iterator after Session is created."""

def __init__(self):

super(IteratorInitializerHook, self).__init__()

self.iterator_initializer_func = None

def after_create_session(self, session, coord):

"""Initialise the iterator after the session has been created."""

self.iterator_initializer_func(session)

IteratorInitializerHook 继承自 SessionRunHook。一旦创建了相关会话,这个钩子就会调用 call after_create_session,并用正确的数据初始化占位符。这个钩子会通过 get_train_inputs 函数返回,并在创建时传递给 Experiment 对象。

train_inputs 函数返回的数据加载操作是 TensorFlow 操作,每次评估时都会返回一个新的批处理。

运行代码

现在我们已经定义了所有的东西,我们可以用以下命令运行代码:

python mnist_estimator.py—model_dir ./mnist_training—data_dir ./mnist_data

如果你不传递参数,它将使用文件顶部的默认标志来确定保存数据和模型的位置。训练将在终端输出全局步长、损失、精度等信息。除此之外,实验和估算器框架将记录 TensorBoard 可以显示的某些统计信息。如果我们运行:

tensorboard—logdir='./mnist_training'

我们就可以看到所有训练统计数据,如训练损失、评估准确性、每步时间和模型图。

TensorFlow中有哪些高级API?如何使用?  Tensorflow框架 第3张

评估精度在 TensorBoard 中的可视化

在 TensorFlow 中,有关 Estimator、Experiment 和 Dataset 框架的示例很少,这也是本文存在的原因。希望这篇文章可以向大家介绍这些架构工作的原理,它们应该采用哪些抽象方法,以及如何使用它们。如果你对它们很感兴趣,以下是其他相关文档。

关于 Estimator、Experiment 和 Dataset 的注释

论文《TensorFlow Estimators: Managing Simplicity vs. Flexibility in High-Level Machine Learning Frameworks》:

Using the Dataset API for TensorFlow Input Pipelines:

tf.estimator.Estimator:

tf.contrib.learn.RunConfig:

tf.estimator.DNNClassifier:

tf.estimator.DNNRegressor:

Creating Estimators in tf.estimator:

tf.contrib.learn.Head:

本文用到的 Slim 框架:

完整示例

"""Script to illustrate usage of tf.estimator.Estimator in TF v1.3"""

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data as mnist_data

from tensorflow.contrib import slim

from tensorflow.contrib.learn import ModeKeys

from tensorflow.contrib.learn import learn_runner

# Show debugging output

tf.logging.set_verbosity(tf.logging.DEBUG)

# Set default flags for the output directories

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_string(

flag_name='model_dir', default_value='./mnist_training',

docstring='Output directory for model and training stats.')

tf.app.flags.DEFINE_string(

flag_name='data_dir', default_value='./mnist_data',

docstring='Directory to download the data to.')

# Define and run experiment ###############################

def run_experiment(argv=None):

# Define model parameters

params = tf.contrib.training.HParams(

learning_rate=0.002,

n_classes=10,

train_steps=5000,

min_eval_frequency=100

# Set the run_config and the directory to save the model and stats

run_config = tf.contrib.learn.RunConfig()

run_config = run_config.replace(model_dir=FLAGS.model_dir)

learn_runner.run(

experiment_fn=experiment_fn, # First-class function

run_config=run_config, # RunConfig

schedule="train_and_evaluate", # What to run

hparams=params # HParams

def experiment_fn(run_config, params):

"""Create an experiment to train and evaluate the model.

Args:

run_config (RunConfig): Configuration for Estimator run.

params (HParam): Hyperparameters

Returns:

(Experiment) Experiment for training the mnist model.

# You can change a subset of the run_config properties as

run_config = run_config.replace(

save_checkpoints_steps=params.min_eval_frequency)

# Define the mnist classifier

estimator = get_estimator(run_config, params)

# Setup data loaders

mnist = mnist_data.read_data_sets(FLAGS.data_dir, one_hot=False)

train_input_fn, train_input_hook = get_train_inputs(

batch_size=128, mnist_data=mnist)

eval_input_fn, eval_input_hook = get_test_inputs(

batch_size=128, mnist_data=mnist)

# Define the experiment

experiment = tf.contrib.learn.Experiment(

estimator=estimator, # Estimator

train_input_fn=train_input_fn, # First-class function

eval_input_fn=eval_input_fn, # First-class function

train_steps=params.train_steps, # Minibatch steps

min_eval_frequency=params.min_eval_frequency, # Eval frequency

train_monitors=[train_input_hook], # Hooks for training

eval_hooks=[eval_input_hook], # Hooks for evaluation

eval_steps=None # Use evaluation feeder until its empty

return experiment

# Define model ############################################

def get_estimator(run_config, params):

"""Return the model as a Tensorflow Estimator object.

Args:

run_config (RunConfig): Configuration for Estimator run.

params (HParams): hyperparameters.

return tf.estimator.Estimator(

model_fn=model_fn, # First-class function

params=params, # HParams

config=run_config # RunConfig

def model_fn(features, labels, mode, params):

"""Model function used in the estimator.

Args:

features (Tensor): Input features to the model.

labels (Tensor): Labels tensor for training and evaluation.

mode (ModeKeys): Specifies if training, evaluation or prediction.

params (HParams): hyperparameters.

Returns:

(EstimatorSpec): Model to be run by Estimator.

is_training = mode == ModeKeys.TRAIN

# Define model's architecture

logits = architecture(features, is_training=is_training)

predictions = tf.argmax(logits, axis=-1)

loss = tf.losses.sparse_softmax_cross_entropy(

labels=tf.cast(labels, tf.int32),

logits=logits

return tf.estimator.EstimatorSpec(

mode=mode,

predictions=predictions,

loss=loss,

train_op=get_train_op_fn(loss, params),

eval_metric_ops=get_eval_metric_ops(labels, predictions)

def get_train_op_fn(loss, params):

"""Get the training Op.

Args:

loss (Tensor): Scalar Tensor that represents the loss function.

params (HParams): Hyperparameters (needs to have `learning_rate`)

Returns:

Training Op

return tf.contrib.layers.optimize_loss(

loss=loss,

global_step=tf.contrib.framework.get_global_step(),

optimizer=tf.train.AdamOptimizer,

learning_rate=params.learning_rate

def get_eval_metric_ops(labels, predictions):

"""Return a dict of the evaluation Ops.

Args:

labels (Tensor): Labels tensor for training and evaluation.

predictions (Tensor): Predictions Tensor.

Returns:

Dict of metric results keyed by name.

return {

'Accuracy': tf.metrics.accuracy(

labels=labels,

predictions=predictions,

name='accuracy')

def architecture(inputs, is_training, scope='MnistConvNet'):

"""Return the output operation following the network architecture.

Args:

inputs (Tensor): Input Tensor

is_training (bool): True iff in training mode

scope (str): Name of the scope of the architecture

Returns:

Logits output Op for the network.

with tf.variable_scope(scope):

with slim.arg_scope(

[slim.conv2d, slim.fully_connected],

weights_initializer=tf.contrib.layers.xavier_initializer()):

net = slim.conv2d(inputs, 20, [5, 5], padding='VALID',

scope='conv1')

net = slim.max_pool2d(net, 2, stride=2, scope='pool2')

net = slim.conv2d(net, 40, [5, 5], padding='VALID',

scope='conv3')

net = slim.max_pool2d(net, 2, stride=2, scope='pool4')

net = tf.reshape(net, [-1, 4 * 4 * 40])

net = slim.fully_connected(net, 256, scope='fn5')

net = slim.dropout(net, is_training=is_training,

scope='dropout5')

net = slim.fully_connected(net, 256, scope='fn6')

net = slim.dropout(net, is_training=is_training,

scope='dropout6')

net = slim.fully_connected(net, 10, scope='output',

activation_fn=None)

return net

# Define data loaders #####################################

class IteratorInitializerHook(tf.train.SessionRunHook):

"""Hook to initialise data iterator after Session is created."""

def __init__(self):

super(IteratorInitializerHook, self).__init__()

self.iterator_initializer_func = None

def after_create_session(self, session, coord):

"""Initialise the iterator after the session has been created."""

self.iterator_initializer_func(session)

# Define the training inputs

def get_train_inputs(batch_size, mnist_data):

"""Return the input function to get the training data.

Args:

batch_size (int): Batch size of training iterator that is returned

by the input function.

mnist_data (Object): Object holding the loaded mnist data.

Returns:

(Input function, IteratorInitializerHook):

- Function that returns (features, labels) when called.

- Hook to initialise input iterator.

iterator_initializer_hook = IteratorInitializerHook()

def train_inputs():

"""Returns training set as Operations.

Returns:

(features, labels) Operations that iterate over the dataset

on every evaluation

with tf.name_scope('Training_data'):

# Get Mnist data

images = mnist_data.train.images.reshape([-1, 28, 28, 1])

labels = mnist_data.train.labels

# Define placeholders

images_placeholder = tf.placeholder(

images.dtype, images.shape)

labels_placeholder = tf.placeholder(

labels.dtype, labels.shape)

# Build dataset iterator

dataset = tf.contrib.data.Dataset.from_tensor_slices(

(images_placeholder, labels_placeholder))

dataset = dataset.repeat(None) # Infinite iterations

dataset = dataset.shuffle(buffer_size=10000)

dataset = dataset.batch(batch_size)

iterator = dataset.make_initializable_iterator()

next_example, next_label = iterator.get_next()

# Set runhook to initialize iterator

iterator_initializer_hook.iterator_initializer_func = \

lambda sess: sess.run(

iterator.initializer,

feed_dict={images_placeholder: images,

labels_placeholder: labels})

# Return batched (features, labels)

return next_example, next_label

# Return function and hook

return train_inputs, iterator_initializer_hook

def get_test_inputs(batch_size, mnist_data):

"""Return the input function to get the test data.

Args:

batch_size (int): Batch size of training iterator that is returned

by the input function.

mnist_data (Object): Object holding the loaded mnist data.

Returns:

(Input function, IteratorInitializerHook):

- Function that returns (features, labels) when called.

- Hook to initialise input iterator.

iterator_initializer_hook = IteratorInitializerHook()

def test_inputs():

"""Returns training set as Operations.

Returns:

(features, labels) Operations that iterate over the dataset

on every evaluation

with tf.name_scope('Test_data'):

# Get Mnist data

images = mnist_data.test.images.reshape([-1, 28, 28, 1])

labels = mnist_data.test.labels

# Define placeholders

images_placeholder = tf.placeholder(

images.dtype, images.shape)

labels_placeholder = tf.placeholder(

labels.dtype, labels.shape)

# Build dataset iterator

dataset = tf.contrib.data.Dataset.from_tensor_slices(

(images_placeholder, labels_placeholder))

dataset = dataset.batch(batch_size)

iterator = dataset.make_initializable_iterator()

next_example, next_label = iterator.get_next()

# Set runhook to initialize iterator

iterator_initializer_hook.iterator_initializer_func = \

lambda sess: sess.run(

iterator.initializer,

feed_dict={images_placeholder: images,

labels_placeholder: labels})

return next_example, next_label

# Return function and hook

return test_inputs, iterator_initializer_hook

# Run script ##############################################

if __name__ == "__main__":

tf.app.run(

main=run_experiment

评论列表暂无评论
发表评论
微信