Skip to main content
 Web开发网 » 站长学院 » 浏览器插件

轻量级业务框架Sniper Framework

2021年11月03日6270百度已收录

Sniper 起源于一项新业务。在转岗之前,我一直在 L 部门写 PHP 代码,遇到过如下问题:

基于 TCP 的 RPC 协议,我们都称之为 Weisai-RPC手工维护 RPC 文档,难以及时更新手写代码处理 RPC 入参,难以保证参数类型,如数字 1 和字符串 "1" 的区别无法方便地查询一个请求对应的所有日志服务拆分得很细,难以进行调用链路追踪使用 JSON 做为配置,难改难认难以监控服务运行状态代码分层标准不统一没有单元测试大约在 2018 年的六月底,我得知要去新的 C 部门做新业务。没有任何历史包袱,我马上着手准备,希望能全方位的解决上面提到的问题。

Go 语言

首先要解决语言选择的问题。PHP 是最熟悉的,但从过去的经验来看,无论从性能还是从代码可维护性方面考虑,PHP 都不是一个好的选择。当时有两种选择,一个是 Java,另一个是 go。平心而论,Java 是要比 Go 要成熟得多。但 Go 更加简单轻便,从 PHP 过渡成本更低。而且当时公司正在推动用 Go 重写原有的 Java 项目。自然就选了 Go。

RPC 协议

有了语言,接下来就要确定通信协议。首先不要使用 REST 风格接口。 REST 中看不中用。REST 的核心是资源和状态,所有的变更都对应状态的转变。

对于简单的场景,REST 看似完美,如:GET /user/123 表示查询。

但如果是发送一条短信呢?一种方案是使用 POST /sms 表示创建一条短信资源,另一种方案则是 POST /sms:send 直接发送。

但不管哪种方式,都不如 RPC 调用直观,其原因有二:

一是 监控指标的时候必须做归一化处理。

所以,不用 REST。

Weisai RPC

这得从原来在 L 部门用的 Weisai-RPC 说起。该 RPC 基于 TCP 传输,消息结构如下:

typedef struct swoole_message { uint32_t header_magic; // magic 字段 默认2233 uint32_t header_ts; // unix时间戳 uint32_t header_check_sum; // 校验和, 暂未定义, 默认为0 uint32_t header_version; // 版本号 uint32_t header_reserved; // 保留字段, 默认0, live-api转发时设置为1 uint32_t header_seq; // 序列号 uint32_t header_len; // body长度 char cmd[32]; // 命令字符串 // 格式 {message_type}controller.method, // message_type 0 request, 1 response // 长度没满右端补充\0, 超过自动右端截断. char* body; // 可变 长度为header_len 格式为JSON: // {"header":..., "body":....}} rpc_message_t;典型的面向 c 语言的设计,方便 c 语言解析,但不太灵活。

比如,cmd 字段只有 32 字节,也就是说接口名字最多只能是 32 字节。还有 body 是字符串,但实际传输的是 JSON,需要二次解析。使用结构化二进制消息就是为了提高解析速度,但这种改过跟 JSON 解码想比又可以忽略。所以,这种混合型的设计除了看上去比较复杂以外,确实没什么优点了。

因为没有采用 之间的相互转换。

切实体会到了 Weisai-RPC 的不便之后,我决定业务 RPC 协议只用 HTTP 传输,原则上不使用二进制消息格式。

轻量级业务框架Sniper Framework  轻量级框架 第1张

关于 gRPC

说到 协议,其主要特性:

只支持 protobuf 编码强依赖 消息五字节头的功能所在,头一个字节表示是否压缩,后四个字节表示消息长度。

有个所谓的 2-8 原则:

一般只用 20% 的代码就可以解决 80% 的问题。但要想解决剩下 20% 的问题的话,则需要额外 80% 的代码。

gRPC 的 stream 接口就是剩下的 20% 的问题。

gRPC 还有个 web 支持的问题。浏览器的 js 无法使用 。

所以,如果没有 stream 接口需求,则完全没有必要使用 gRPC;如果直的有这类需求,也不可能太多,直接使用原生 TCP/WebSocket 协议开发也不是难事。

最终我们选择了 twirp。twirp 可以看作是简化版的 gRPC,同样用 protobuf 描述,不依赖 编码格式的支持,这是移动端的历史包袱导致的,没办法。

现在的移动端使用 编码,但没目前没有用,估计也不会有人喜欢用。

接口文档

使用 proto 描述 RPC 接口有一个问题,就是接口说明分了 request, response 和 service,比较分散,尤其是要用到嵌套 message 的时候,对移动端开发同学很不友好。目前也一些文档生成工具,比如:protoc-gen-doc。但 protoc-gen-doc 也是为不同 message 生成对应文档,使用者需要在文档的不同部分来回跳转,很不直观。所以我们开发了 protoc-gen-markdown。这是生成的文档示例。最终,我们给 gitlab 加了一个 webhook,当有新分支创建或者更新的时候会自动生成 markdown 文档并进而转化成 html 文档,彻底解决了文档同步的问题。

protoc-gen-markdown 也不完美。它无法正确处理 proto 中的 map 消息。但我们在业务中没有用到这种类型,所以没有受到影响。但这始终是个问题。protoc-gen-markdown 最早是跟 twirp 的改造一起进行的。最早的提交记录是从 2018 年 7 月 3 日开始的,主要功能到 7 月 7 日就完成了,到现在也没有大的变动。

配置系统

解决了通信问题之后,接下来要设计配置系统。

在 L 部门的时候都是用 JSON 做配置。JSON 一方面对格式要求比较高,比如列表最后一个元素之后不能加逗号等;另一方面不支持注释,时间长了很难弄清各配置项的含义。还有就是 JSON 很灵活,导致很多业务配置层层嵌套,不好读、不敢改。

鉴于之前的经验,我们放弃了 JSON,最终选择了 toml。而且框加要求所有配置只能是 k-v 型字符串的。如果业务代码要用复杂的配置,则需要自行处理反序列化逻辑。因为是 k-v 型的,所以很容易兼容环境变量,所有的配置项都可以通过环境变量覆盖。最后就是框架支持配置的热更新,会实时读取配置文件内容的变更。

我们也没有重复造轮子,配置的解析和加载都是通过 viper 完成的。

日志与监控

日志组件选用 logrus。没别的原因,就是 star 比较多。logrus 支持不同的 formatter,开发环境会将日志写到标准输出设备,其他环境会通过 lancer 写到 elk(这一部分不适合开源)。

框架在处理请求的时候会创建一个 opentracing 的 span。这个 span 是有一个 trace-id 的。框架会把这个 trace-id 注入到 ctx 中。我们希望相关的日志都要带有这个 trace-id,所以需要通过 sniper/util/log.Get(ctx context.Context) 方法来获取 logger 实例,使用获取的实例记录日志会自动输出 trace-id。框架在输出响应内容的时候也会自动在 header 中加上这个 trace-id。

公司内部有个叫 dapper 组件,但没有 opentracing sdk。框架自己提供了一个,但这一部分不适合开源。

好在是适配了 opentracing,大家可以很方便的集成 jaeger 等组件。

基础组件

主要的基础组件有三个,分别是 客户端是后来加入的,现在还没在业务中使用。

Sniper 对基础组件提供统一封装,主要解决以下问题:

加载配置处理 ctx输出日志支持 opentracing统计 prometheus 指标现在很少有框架会注意到这些方面,尤其是后三条。大家观注更多的往往是性能,往往是框架代码是否优雅。估计只有在生产环境摸爬滚打过几次才会对这些东西产生共鸣。

关于 ORM

很多框架都提供 ORM 组件,但 sniper 不然。不推荐使用 ORM,原因如下:

ORM 固然方便,但会隐藏 SQL 查询细节,不利于程序员全盘掌握 db 查询情况。ORM 用法并不统一,相对 SQL 标准有额外的学习负担。ORM 无法覆盖所有有 SQL 查询,在特定业务场景下仍需要写原生 SQL。ORM 大多基于反射,有一定的性能损失。业务代码一般会有数据访问层(DAO),既便引入 ORM,也只局限在 DAO 层。关于集群

Sniper 框架的 memcache 和 redis 组件都不支持集群的,而且是有意不支持甚至是将已有的相关代码直接删除。

为什么呢?我们认为这些细节不应该是一个业务框架要关心的内容。这些内容应该交给统一的中间件处理。业务代码连中间件,根本无需感知集群的存在。对于 memcache,我们生产环境用的是 twemproxy,对于 redis 和 。

我们坚信,未来一定是 service-mesh 的世界,诸如服务发现、负载均衡、限流熔断这一类的功能应该交由 mesh 服务处理。让我们试目以待。

单元测试

单元测试部分不适合开源,只能分享一些相关的思考。

没有单元测试,就很难有真正的积累。我们的核心业务逻辑基本都有单元测试覆盖。有一次要改支付逻辑,我改完跑通测试后直接移交测试,测试通过,直接上线,一气呵成。我甚至都没自己用 curl 调一下接口,因为我知道,单元测试已经覆盖的已知的关键流程。

这当然不是什么值得炫耀的事情。但有效的单元测试确实对提高代码的质量有很大的裨益。

但怎么测才好呢?关键在 mock。Go 对 mock 并不是很友好。而且如果 mock 多了,一方面会极大降低写测试用例的体验;另一方面会导致测试用例真就成单元测试了,可能出现各单元都没问题,但整个系统有问题的情况。

所以,写测试一定要简单,测试逻辑一定要有效。为实现这两个目标,我们定了两条规则:

外部 直接起服务,各测试用例自行维护自己的测试数据集为了进一步降低编写测试用例的复杂度,我们还提供了自动同步表结构和导入种数据的功能。如果测试用例不想手工维护测试数据集,则可以将相关数据写种子数据集。测试框架会自动导入。

总结

引入 sniper 框架快一年了,基本上解决了在 L 部门遇到的问题,无论在线下开发、联调和测试效率方面,还是线上运行、排错效率方面,都有不俗的表现。

git地址:

评论列表暂无评论
发表评论
微信