当前正处在大数据时代背景下,大数据技术目前也正处在落地应用的初期,未来大数据的发展空间还是比较大的,所以学习大数据相关技术是个不错的选择。
大数据编程语言的选择要根据具体的工作岗位来进行,目前大数据领域的工作岗位包括大数据平台研发、大数据应用开发、大数据分析和大数据运维,除了大数据平台研发之外,其他岗位的人才需求量还是比较大的,尤其是大数据分析岗位。
大数据应用开发岗位比较常见的编程语言包括Java、Python、Scala等,Java和Python是Hadoop平台比较常见的编程语言,而在Spark平台下,往往更多的选择是Scala语言。从应用的普遍性和功能性来说,在Hadoop平台下比较推荐采用Java语言,在Spark平台下比较推荐采用Scala语言。Java语言的生态比较健全,而且性能稳定,所以采用Java语言会降低一定的开发风险。
大数据分析岗位比较常见的编程语言包括Python、R、Julia、Matlab、GO等语言,其中Python和R语言是比较常见的选择。Python语言随着大数据的发展,在近几年上升势头非常明显,在最新的TIOBE语言排行榜上已经排到了第三位,这是一个非常不错的成绩。Python语言语法简单、扩展性强、调整方便,而且Python语言自身具备强大的库支持(Numpy、Scipy、Matplotlib等),在进行数据分析时非常方便。
另外,Python语言也是大数据运维岗位比较常见的选择,从这个角度来看,Python语言是大数据从业人员应该掌握的重点语言。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续在头条写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网方面的问题,也可以咨询我,谢谢!