在2014年6月30日到7月2日举行的Spark Summit是整个云计算大数据领域的Big Event,在会议上DataBricks公司提出了构建开放的Cloud平台,而且宣布该平台完全基于Spark,该平台功能类似于EC2,但比EC2更快、更灵活、更易用。
构建一个开发的云服务平台,需要存储技术、计算平台、消息驱动框架和开发API架构设计等,所以我们把课程主要分为两个阶段:1,Spark技术实战;2,构建开发云平他的消息驱动框架和开放API设计实现;
本课程是是整个系列课程的第一阶段课程,采用当今世界公认的最好的大数据技术Spark来打造开放云平台的计算框架。
授课的案例部分
1,主要采用Sogou和纽约时报的数据进行演示和说明;
2,在讲授各个知识点的时候亦分别数据支撑的案例演示;
课程介绍
课程包含Spark的架构设计、Spark编程模型、Spark内核框架源码剖析、Spark的广播变量与累加器、Shark的原理和使用、Spark的机器学习、Spark的图计算GraphX、Spark SQL、Spark实时流处理、Spark的优化、Spark on Yarn、JobServer等Spark 1.0.0所有的核心内容
最后以一个商业级别的Spark案例为基础,实战展示商业级别Spark项目的架构设计、实现和优化;
培训对象
1,云计算大数据从业者;
2,Hadoop使用者;
3,?系统架构师、系统分析师、高级程序员、资深开发人员;
4,牵涉到大数据处理的数据中心运行、规划、设计负责人;
5,政府机关,金融保险、移动和互联网等大数据来源单位的负责人;
6,高校、科研院所涉及到大数据与分布式数据处理的项目负责人;
7,数据仓库管理人员、建模人员,分析和开发人员、系统管理人员、数据库管理人员以及对数据仓库感兴趣的其他人员;
学员基础
了解面向对象编程;
了解Linux的基本使用;
了解Scala语法
王家林老师(联系邮箱18610086859@126.com 电话:18610086859 QQ:1740415547 微信号:18610086859)
中国目前唯一的移动互联网和云计算大数据集大成者;
云计算大数据Spark亚太研究院院长和首席专家;
Spark亚太研究院院长和首席专家,Spark源码级专家,对Spark潜心研究(2012年1月起)2年多后,在完成了对Spark的13不同版本的源码的彻底研究的同时不断在实际环境中使用Spark的各种特性的基础之上,编写了世界上第一本系统性的Spark书籍并开设了世界上第一个系统性的Spark课程并开设了世界上第一个Spark高端课程(涵盖Spark内核剖析、源码解读、性能优化和商业案例剖析)。Spark源码研究狂热爱好者,醉心于Spark的新型大数据处理模式改造和应用。
Hadoop源码级专家,曾负责某知名公司的类Hadoop框架开发工作,专注于Hadoop一站式解决方案的提供,同时也是云计算分布式大数据处理的最早实践者之一,Hadoop的狂热爱好者,不断的在实践中用Hadoop解决不同领域的大数据的高效处理和存储,现在正负责Hadoop在搜索引擎中的研发等,著有《云计算分布式大数据Hadoop实战高手之路---从零开始》《云计算分布式大数据Hadoop实战高手之路---高手崛起》《云计算分布式大数据Hadoop。实战高手之路---高手之巅》等;
Android架构师、高级工程师、咨询顾问、培训专家;
通晓Android、HTML5、Hadoop,迷恋英语播音和健美;
致力于Android、HTML5、Hadoop的软、硬、云整合的一站式解决方案;
国内最早(2007年)从事于Android系统移植、软硬整合、框架修改、应用程序软件开发以及Android系统测试和应用软件测试的技术专家和技术创业人员之一。
HTML5技术领域的最早实践者(2009年)之一,成功为多个机构实现多款自定义HTML5浏览器,参与某知名的HTML5浏览器研发;
超过10本的IT畅销书作者;
培训内容
第一天 第1堂课:Spark的架构设计
1.1 Spark生态系统剖析
1.2 Spark的架构设计剖析
1.3 RDD计算流程解析
1.4 Spark的出色容错机制
第2堂课:Spark编程模型
2.1 RDD
2.2 transformation
2.3 action
2.4 lineage
2.5宽依赖与窄依赖
第3堂课:深入Spark内核
3.1 Spark集群
3.2 任务调度
3.3 DAGScheduler
3.4 TaskScheduler
3.5 Task内部揭秘
第4堂课:Spark的广播变量与累加器
4.1 广播变量的机制
4.2 广播变量使用最佳实践
4.3 累加器的机制
4.4 累加器使用的最佳实践
第5堂课:Spark多语言编程
5.1 PySpark API
5.2 使用 Python编写Spark程序
5.3 Java 8的函数式编程
5.4 使用Java 8编写Spark程序
5.5 Spark编程语言最佳选择:Scala
5.6 用Scala演绎Spark编程艺术
第6堂课:SparkContext解析和数据加载以及存储
6.1 源码剖析SparkContext
6.2 Scala、Java、Python使用SparkContext
6.4 加载数据成为RDD
6.5 把数据物化
时间 內? 容 备注
第二天 第7堂课:深入实战RDD
7.1 DAG
7.2 深入实战各种Scala RDD Function
7.3 Spark Java RDD Function
7.4 RDD的优化问题
第8堂课:Shark的原理和使用
8.1 Shark与Hive
8.2 安装和配置Shark
8.3 使用Shark处理数据
8.4 在Spark程序中使用Shark Queries
8.5 SharkServer
8.6 思考Shark架构
第9堂课:Spark的机器学习
9.1 LinearRegression
9.2 K-Means
9.3 Collaborative Filtering
第10堂课:Spark的图计算GraphX
10.1 Table Operators
10.2 Graph Operators
10.3 GraphX
第11堂课:Spark SQL
11.1 Parquet支持
11.2 DSL
11.3 SQL on RDD
时间 內? 容 备注
第三天 第12堂课:Spark实时流处理
12.1 DStream
12.2 transformation
12.3 checkpoint
12.4 性能优化
第13堂课:Spark程序的测试
13.1 编写可测试的Spark程序
13.2 Spark测试框架解析
13.3 Spark测试代码实战
第14堂课:Spark的优化
14.1 Logs
14.2 并发
14.3 内存
14.4 垃圾回收
14.5 序列化
14.6 安全
第15堂课:Spark on Yarn
15.1 Spark on Yarn的架构原理
15.2 Spark on Yarn的最佳实践
第16堂课:JobServer
16.1 JobServer的架构设计
16.2 JobServer提供的接口
16.3 JobServer最佳实践
第17堂课:Spark项目案例实战
17.1 Spark项目的最佳架构模式
17.2 案例的介绍和架构
17.3 案例的源码实现
17.4 调优
分析Yahoo!淘宝等公司的大数据架构的生产环境下的案例,数据来自Sogou和纽约时报,阐述Spark项目案例的实施之道,使您能够应对绝大部分的大数据实施和业务场景。