Skip to main content
 Web开发网 » 站长学院 » 浏览器插件

压缩算法原理

2021年11月05日6510百度已收录

哈夫曼

哈夫曼编码是无损压缩当中最好的方法。它使用预先二进制描述来替换每个符号,长度由特殊符号出现的频率决定。常见的符号需要很少的位来表示,而不常见的符号需要很多为来表示。

哈夫曼算法在改变任何符号二进制编码引起少量密集表现方面是最佳的。然而,它并不处理符号的顺序和重复或序号的序列。

2.1 原理

我不打算探究哈夫曼编码的所有实际的细节,但基本的原理是为每个符号找到新的二进制表示,从而通常符号使用很少的位,不常见的符号使用较多的位。

简短的说,这个问题的解决方案是为了查找每个符号的通用程度,我们建立一个未压缩数据的柱状图;通过递归拆分这个柱状图为两部分来创建一个二叉树,每个递归的一半应该和另一半具有同样的权(权是 ∑ N K =1 符号数 k , N 是分之中符号的数量,符号数 k 是符号 k出现的次数 )

这棵树有两个目的:

1. 编码器使用这棵树来找到每个符号最优的表示方法

2. 解码器使用这棵树唯一的标识在压缩流中每个编码的开始和结束,其通过在读压缩数据位的时候自顶向底的遍历树,选择基于数据流中的每个独立位的分支,一旦一个到达叶子节点,解码器知道一个完整的编码已经读出来了。

压缩后的数据流是 24 位(三个字节),原来是 80 位( 10 个字节)。当然,我应该存储哈夫曼树,这样解码器就能够解码出对应的压缩流了,这就使得该例子中的真正数据流比输入的流数据量大。这是相对较短的数据上的副作用。对于大数据量来说,上面的哈夫曼树就不占太多比例了。

解码的时候,从上到下遍历树,为压缩的流选择从左 / 右分支,每次碰到一个叶子节点的时候,就可以将对应的字节写到解压输出流中,然后再从根开始遍历。

2.2 实现

哈夫曼编码器可以在基本压缩库中找到,其是非常直接的实现。

这个实现的基本缺陷是:

1. 慢位流实现

2. 相当慢的解码(比编码慢)

3. 最大的树深度是 32 (编码器在任何超过 32 位大小的时候退出)。如果我不是搞错的话,这是不可能的,除非输出的数据大于 2 32字节。

另一方面,这个实现有几个优点:

1. 哈夫曼树以一个紧密的形式每个符号要求 12 位(对于 8 位的符号)的方式存储,这意味着最大的头为 384 。

2. 编码相当容易理解

哈夫曼编码在数据有噪音的情况(不是有规律的,例如 RLE )下非常好,这中情况下大多数基于字典方式的编码器都有问题。

评论列表暂无评论
发表评论
微信